Artwork

A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Inductor - IR

18:00
 
Megosztás
 

Manage episode 395704338 series 2921809
A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Inductor IR is an intermediate representation that lives between ATen FX graphs and the final Triton code generated by Inductor. It was designed to faithfully represent PyTorch semantics and accordingly models views, mutation and striding. When you write a lowering from ATen operators to Inductor IR, you get a TensorBox for each Tensor argument which contains a reference to the underlying IR (via StorageBox, and then a Buffer/ComputedBuffer) that says how the Tensor was computed. The inner computation is represented via define-by-run, which allows for compact definition of IR representation, while still allowing you to extract an FX graph out if you desire. Scheduling then takes buffers of inductor IR and decides what can be fused. Inductor IR may have too many nodes, this would be a good thing to refactor in the future.

  continue reading

83 epizódok

Artwork

Inductor - IR

PyTorch Developer Podcast

26 subscribers

published

iconMegosztás
 
Manage episode 395704338 series 2921809
A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Inductor IR is an intermediate representation that lives between ATen FX graphs and the final Triton code generated by Inductor. It was designed to faithfully represent PyTorch semantics and accordingly models views, mutation and striding. When you write a lowering from ATen operators to Inductor IR, you get a TensorBox for each Tensor argument which contains a reference to the underlying IR (via StorageBox, and then a Buffer/ComputedBuffer) that says how the Tensor was computed. The inner computation is represented via define-by-run, which allows for compact definition of IR representation, while still allowing you to extract an FX graph out if you desire. Scheduling then takes buffers of inductor IR and decides what can be fused. Inductor IR may have too many nodes, this would be a good thing to refactor in the future.

  continue reading

83 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás