Artwork

A tartalmat a Sequoia Capital biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Sequoia Capital vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

ReflectionAI Founder Ioannis Antonoglou: From AlphaGo to AGI

52:29
 
Megosztás
 

Manage episode 463560176 series 3586723
A tartalmat a Sequoia Capital biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Sequoia Capital vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Ioannis Antonoglou, founding engineer at DeepMind and co-founder of ReflectionAI, has seen the triumphs of reinforcement learning firsthand. From AlphaGo to AlphaZero and MuZero, Ioannis has built the most powerful agents in the world. Ioannis breaks down key moments in AlphaGo's game against Lee Sodol (Moves 37 and 78), the importance of self-play and the impact of scale, reliability, planning and in-context learning as core factors that will unlock the next level of progress in AI.

Hosted by: Stephanie Zhan and Sonya Huang, Sequoia Capital

Mentioned in this episode:

  • PPO: Proximal Policy Optimization algorithm developed by DeepMind in game environments. Also used by OpenAI for RLHF in ChatGPT.
  • MuJoCo: Open source physics engine used to develop PPO
  • Monte Carlo Tree Search: Heuristic search algorithm used in AlphaGo as well as video compression for YouTube and the self-driving system at Tesla
  • AlphaZero: The DeepMind model that taught itself from scratch how to master the games of chess, shogi and Go
  • MuZero: The DeepMind follow up to AlphaZero that mastered games without knowing the rules and able to plan winning strategies in unknown environments
  • AlphaChem: Chemical Synthesis Planning with Tree Search and Deep Neural Network Policies
  • DQN: Deep Q-Network, Introduced in 2013 paper, Playing Atari with Deep Reinforcement Learning
  • AlphaFold: DeepMind model for predicting protein structures for which Demis Hassabis, John Jumper and David Baker won the 2024 Nobel Prize in Chemistry
  continue reading

66 epizódok

Artwork
iconMegosztás
 
Manage episode 463560176 series 3586723
A tartalmat a Sequoia Capital biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Sequoia Capital vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Ioannis Antonoglou, founding engineer at DeepMind and co-founder of ReflectionAI, has seen the triumphs of reinforcement learning firsthand. From AlphaGo to AlphaZero and MuZero, Ioannis has built the most powerful agents in the world. Ioannis breaks down key moments in AlphaGo's game against Lee Sodol (Moves 37 and 78), the importance of self-play and the impact of scale, reliability, planning and in-context learning as core factors that will unlock the next level of progress in AI.

Hosted by: Stephanie Zhan and Sonya Huang, Sequoia Capital

Mentioned in this episode:

  • PPO: Proximal Policy Optimization algorithm developed by DeepMind in game environments. Also used by OpenAI for RLHF in ChatGPT.
  • MuJoCo: Open source physics engine used to develop PPO
  • Monte Carlo Tree Search: Heuristic search algorithm used in AlphaGo as well as video compression for YouTube and the self-driving system at Tesla
  • AlphaZero: The DeepMind model that taught itself from scratch how to master the games of chess, shogi and Go
  • MuZero: The DeepMind follow up to AlphaZero that mastered games without knowing the rules and able to plan winning strategies in unknown environments
  • AlphaChem: Chemical Synthesis Planning with Tree Search and Deep Neural Network Policies
  • DQN: Deep Q-Network, Introduced in 2013 paper, Playing Atari with Deep Reinforcement Learning
  • AlphaFold: DeepMind model for predicting protein structures for which Demis Hassabis, John Jumper and David Baker won the 2024 Nobel Prize in Chemistry
  continue reading

66 epizódok

모든 에피소드

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás