Artwork

A tartalmat a The New Stack Podcast and The New Stack biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The New Stack Podcast and The New Stack vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

How Can We Solve Observability's Data Capture and Spending Problem?

22:21
 
Megosztás
 

Manage episode 520351842 series 2574278
A tartalmat a The New Stack Podcast and The New Stack biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The New Stack Podcast and The New Stack vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

305 epizódok

Artwork
iconMegosztás
 
Manage episode 520351842 series 2574278
A tartalmat a The New Stack Podcast and The New Stack biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The New Stack Podcast and The New Stack vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

DevOps practitioners — whether developers, operators, SREs or business stakeholders — increasingly rely on telemetry to guide decisions, yet face growing complexity, siloed teams and rising observability costs. In a conversation at KubeCon + CloudNativeCon North America, IBM’s Jacob Yackenovich emphasized the importance of collecting high-granularity, full-capture data to avoid missing critical performance signals across hybrid application stacks that blend legacy and cloud-native components. He argued that observability must evolve to serve both technical and nontechnical users, enabling teams to focus on issues based on real business impact rather than subjective judgment.

AI’s rapid integration into applications introduces new observability challenges. Yackenovich described two patterns: add-on AI services, such as chatbots, whose failures don’t disrupt core workflows, and blocking-style AI components embedded in essential processes like fraud detection, where errors directly affect application function.

Rising cloud and ingestion costs further complicate telemetry strategies. Yackenovich cautioned against limiting visibility for budget reasons, advocating instead for predictable, fixed-price observability models that let organizations innovate without financial uncertainty.

Learn more from The New Stack about the latest in observability:

Introduction to Observability

Observability 2.0? Or Just Logs All Over Again?

Building an Observability Culture: Getting Everyone Onboard

Join our community of newsletter subscribers to stay on top of the news and at the top of your game.


Hosted by Simplecast, an AdsWizz company. See pcm.adswizz.com for information about our collection and use of personal data for advertising.

  continue reading

305 epizódok

सभी एपिसोड

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás