Artwork

A tartalmat a The Data Flowcast biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The Data Flowcast vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Why Developer Experience Shapes Data Pipeline Standards at Next Insurance with Snir Israeli

30:28
 
Megosztás
 

Manage episode 481301881 series 2053958
A tartalmat a The Data Flowcast biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The Data Flowcast vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

72 epizódok

Artwork
iconMegosztás
 
Manage episode 481301881 series 2053958
A tartalmat a The Data Flowcast biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a The Data Flowcast vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Creating consistency across data pipelines is critical for scaling engineering teams and ensuring long-term maintainability.

In this episode, Snir Israeli, Senior Data Engineer at Next Insurance, shares how enforcing coding standards and investing in developer experience transformed their approach to data engineering. He explains how implementing automated code checks, clear documentation practices and a scoring system helped drive alignment across teams, improve collaboration and reduce technical debt in a fast-growing data environment.

Key Takeaways:

(02:59) Inconsistencies in code style create challenges for collaboration and maintenance.

(04:22) Programmatically enforcing rules helps teams scale their best practices.

(08:55) Performance improvements in data pipelines lead to infrastructure cost savings.

(13:22) Developer experience is essential for driving adoption of internal tools.

(19:44) Dashboards can operationalize standards enforcement and track progress over time.

(22:49) Standardization accelerates onboarding and reduces friction in code reviews.

(25:39) Linting rules require ongoing maintenance as tools and platforms evolve.

(27:47) Starting small and involving the team leads to better adoption and long-term success.

Resources Mentioned:

Snir Israeli

https://www.linkedin.com/in/snir-israeli/

Next Insurance | LinkedIn

https://www.linkedin.com/company/nextinsurance/

Next Insurance | Website

https://www.nextinsurance.com/

Apache Airflow

https://airflow.apache.org/

https://www.astronomer.io/events/roadshow/london/

https://www.astronomer.io/events/roadshow/new-york/

https://www.astronomer.io/events/roadshow/sydney/

https://www.astronomer.io/events/roadshow/san-francisco/

https://www.astronomer.io/events/roadshow/chicago/

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

72 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás