Artwork

A tartalmat a Kostas Pardalis, Nitay Joffe biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kostas Pardalis, Nitay Joffe vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

How Denormalized is Building ‘DuckDB for Streaming’ with Apache DataFusion

1:02:01
 
Megosztás
 

Manage episode 439643395 series 3594857
A tartalmat a Kostas Pardalis, Nitay Joffe biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kostas Pardalis, Nitay Joffe vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this episode, Kostas and Nitay are joined by Amey Chaugule and Matt Green, co-founders of Denormalized. They delve into how Denormalized is building an embedded stream processing engine—think “DuckDB for streaming”—to simplify real-time data workloads. Drawing from their extensive backgrounds at companies like Uber, Lyft, Stripe, and Coinbase. Amey and Matt discuss the challenges of existing stream processing systems like Spark, Flink, and Kafka. They explain how their approach leverages Apache DataFusion, to create a single-node solution that reduces the complexities inherent in distributed systems.

The conversation explores topics such as developer experience, fault tolerance, state management, and the future of stream processing interfaces. Whether you’re a data engineer, application developer, or simply interested in the evolution of real-time data infrastructure, this episode offers valuable insights into making stream processing more accessible and efficient.


Contacts & Links
Amey Chaugule
Matt Green
Denormalized
Denormalized Github Repo

Chapters
00:00 Introduction and Background
12:03 Building an Embedded Stream Processing Engine
18:39 The Need for Stream Processing in the Current Landscape
22:45 Interfaces for Interacting with Stream Processing Systems
26:58 The Target Persona for Stream Processing Systems
31:23 Simplifying Stream Processing Workloads and State Management
34:50 State and Buffer Management
37:03 Distributed Computing vs. Single-Node Systems
42:28 Cost Savings with Single-Node Systems
47:04 The Power and Extensibility of Data Fusion
55:26 Integrating Data Store with Data Fusion
57:02 The Future of Streaming Systems
01:00:18 intro-outro-fade.mp3

Click here to view the episode transcript.

  continue reading

22 epizódok

Artwork
iconMegosztás
 
Manage episode 439643395 series 3594857
A tartalmat a Kostas Pardalis, Nitay Joffe biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kostas Pardalis, Nitay Joffe vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this episode, Kostas and Nitay are joined by Amey Chaugule and Matt Green, co-founders of Denormalized. They delve into how Denormalized is building an embedded stream processing engine—think “DuckDB for streaming”—to simplify real-time data workloads. Drawing from their extensive backgrounds at companies like Uber, Lyft, Stripe, and Coinbase. Amey and Matt discuss the challenges of existing stream processing systems like Spark, Flink, and Kafka. They explain how their approach leverages Apache DataFusion, to create a single-node solution that reduces the complexities inherent in distributed systems.

The conversation explores topics such as developer experience, fault tolerance, state management, and the future of stream processing interfaces. Whether you’re a data engineer, application developer, or simply interested in the evolution of real-time data infrastructure, this episode offers valuable insights into making stream processing more accessible and efficient.


Contacts & Links
Amey Chaugule
Matt Green
Denormalized
Denormalized Github Repo

Chapters
00:00 Introduction and Background
12:03 Building an Embedded Stream Processing Engine
18:39 The Need for Stream Processing in the Current Landscape
22:45 Interfaces for Interacting with Stream Processing Systems
26:58 The Target Persona for Stream Processing Systems
31:23 Simplifying Stream Processing Workloads and State Management
34:50 State and Buffer Management
37:03 Distributed Computing vs. Single-Node Systems
42:28 Cost Savings with Single-Node Systems
47:04 The Power and Extensibility of Data Fusion
55:26 Integrating Data Store with Data Fusion
57:02 The Future of Streaming Systems
01:00:18 intro-outro-fade.mp3

Click here to view the episode transcript.

  continue reading

22 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás