
Lépjen offline állapotba az Player FM alkalmazással!
Outstanding Paper Award Winners - 2/2 @ RLC 2025
Manage episode 500923466 series 2536330
We caught up with the RLC Outstanding Paper award winners for your listening pleasure.
Recorded on location at Reinforcement Learning Conference 2025, at University of Alberta, in Edmonton Alberta Canada in August 2025.
Featured References
Empirical Reinforcement Learning Research
Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions
Ayush Jain, Norio Kosaka, Xinhu Li, Kyung-Min Kim, Erdem Biyik, Joseph J Lim
Applications of Reinforcement Learning
WOFOSTGym: A Crop Simulator for Learning Annual and Perennial Crop Management Strategies
William Solow, Sandhya Saisubramanian, Alan Fern
Emerging Topics in Reinforcement Learning
Towards Improving Reward Design in RL: A Reward Alignment Metric for RL Practitioners
Calarina Muslimani, Kerrick Johnstonbaugh, Suyog Chandramouli, Serena Booth, W. Bradley Knox, Matthew E. Taylor
Scientific Understanding in Reinforcement Learning
Multi-Task Reinforcement Learning Enables Parameter Scaling
Reginald McLean, Evangelos Chatzaroulas, J K Terry, Isaac Woungang, Nariman Farsad, Pablo Samuel Castro
73 epizódok
Manage episode 500923466 series 2536330
We caught up with the RLC Outstanding Paper award winners for your listening pleasure.
Recorded on location at Reinforcement Learning Conference 2025, at University of Alberta, in Edmonton Alberta Canada in August 2025.
Featured References
Empirical Reinforcement Learning Research
Mitigating Suboptimality of Deterministic Policy Gradients in Complex Q-functions
Ayush Jain, Norio Kosaka, Xinhu Li, Kyung-Min Kim, Erdem Biyik, Joseph J Lim
Applications of Reinforcement Learning
WOFOSTGym: A Crop Simulator for Learning Annual and Perennial Crop Management Strategies
William Solow, Sandhya Saisubramanian, Alan Fern
Emerging Topics in Reinforcement Learning
Towards Improving Reward Design in RL: A Reward Alignment Metric for RL Practitioners
Calarina Muslimani, Kerrick Johnstonbaugh, Suyog Chandramouli, Serena Booth, W. Bradley Knox, Matthew E. Taylor
Scientific Understanding in Reinforcement Learning
Multi-Task Reinforcement Learning Enables Parameter Scaling
Reginald McLean, Evangelos Chatzaroulas, J K Terry, Isaac Woungang, Nariman Farsad, Pablo Samuel Castro
73 epizódok
Minden epizód
×Üdvözlünk a Player FM-nél!
A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.