Artwork

A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

How Can Data Science Solve Cybersecurity Challenges?

1:00:01
 
Megosztás
 

Manage episode 359344658 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.  

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

170 epizódok

Artwork
iconMegosztás
 
Manage episode 359344658 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this webcast, Tom Scanlon, Matthew Walsh and Jeffrey Mellon discuss approaches to using data science and machine learning to address cybersecurity challenges. They provide an overview of data science, including a discussion of what constitutes a good problem to solve with data science. They also discuss applying data science to cybersecurity challenges, highlighting specific challenges such as detecting advanced persistent threats (APTs), assessing risk and trust, determining the authenticity of digital content, and detecting deepfakes.  

What attendees will learn:

  • Basics of data science and what makes for a good data science problem
  • How data science techniques can be applied to cybersecurity
  • Ways to get started using data science to address cybersecurity challenges
  continue reading

170 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás