Artwork

A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Evaluating Trustworthiness of AI Systems

1:02:08
 
Megosztás
 

Manage episode 376935557 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

AI system trustworthiness is dependent on end users' confidence in the system's ability to augment their needs. This confidence is gained through evidence of the system's capabilities. Trustworthy systems are designed with an understanding of the context of use and careful attention to end-user needs. In this webcast, SEI researchers discuss how to evaluate trustworthiness of AI systems given their dynamic nature and the challenges of managing ongoing responsibility for maintaining trustworthiness.

What attendees will learn:

  • Basic understanding of what makes AI systems trustworthy
  • How to evaluate system outputs and confidence
  • How to evaluate trustworthiness to end users (and affected people/communities)
  continue reading

174 epizódok

Artwork
iconMegosztás
 
Manage episode 376935557 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

AI system trustworthiness is dependent on end users' confidence in the system's ability to augment their needs. This confidence is gained through evidence of the system's capabilities. Trustworthy systems are designed with an understanding of the context of use and careful attention to end-user needs. In this webcast, SEI researchers discuss how to evaluate trustworthiness of AI systems given their dynamic nature and the challenges of managing ongoing responsibility for maintaining trustworthiness.

What attendees will learn:

  • Basic understanding of what makes AI systems trustworthy
  • How to evaluate system outputs and confidence
  • How to evaluate trustworthiness to end users (and affected people/communities)
  continue reading

174 epizódok

所有剧集

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás