Artwork

A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Can You Rely on Your AI? Applying the AIR Tool to Improve Classifier Performance

38:50
 
Megosztás
 

Manage episode 421358557 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 epizódok

Artwork
iconMegosztás
 
Manage episode 421358557 series 1264075
A tartalmat a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Carnegie Mellon University Software Engineering Institute and SEI Members of Technical Staff vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Modern analytic methods, including artificial intelligence (AI) and machine learning (ML) classifiers, depend on correlations; however, such approaches fail to account for confounding in the data, which prevents accurate modeling of cause and effect and often leads to prediction bias. The Software Engineering Institute (SEI) has developed a new AI Robustness (AIR) tool that allows users to gauge AI and ML classifier performance with unprecedented confidence. This project is sponsored by the Office of the Under Secretary of Defense for Research and Engineering to transition use of our AIR tool to AI users across the Department of Defense. During the webcast, the research team will hold a panel discussion on the AIR tool and discuss opportunities for collaboration. Our team efforts focus strongly on transition and provide guidance, training, and software that put our transition collaborators on a path to successful adoption of this technology to meet their AI/ML evaluation needs.

What Attendees Will Learn:

• How AIR adds analytical capability that didn't previously exist, enabling an analysis to characterize and measure the overall accuracy of the AI as the underlying environment changes

• Examples of the AIR process and results from causal discovery to causal identification to causal inference • Opportunities for partnership and collaboration

  continue reading

174 epizódok

すべてのエピソード

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás