Artwork

A tartalmat a Andres Diaz biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Andres Diaz vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

AI-based effort estimates for agile iterations.

6:47
 
Megosztás
 

Manage episode 508337994 series 3670252
A tartalmat a Andres Diaz biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Andres Diaz vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Summary: The episode explores using AI to assist with effort estimation in agile sprints. AI can turn each user story into observable signals (relative size, technical complexity, uncertainty, dependencies, risks) to predict effort in hours, days, or story points, aiming to reduce bias, speed up planning, and enable data-driven improvement. It stresses starting from existing data (delivered stories, past estimates, task durations, defects/rework) and keeping data clean and consistent. Three practical AI approaches are discussed: AI as a planning assistant, a learning model with human calibration, and a hybrid method that decomposes stories into tasks for consolidated estimates. A five-step action plan is provided: prepare the backlog and units, collect/clean data, define features, run a short pilot, and measure/calibrate. The text emphasizes data governance, privacy, and a culture of continuous improvement, noting that breaking stories into tasks helps AI capture micro-efforts and reveal hidden dependencies. Realistic expectations are that AI reduces variability and fosters informed discussion rather than delivering perfect predictions. Practical examples include decomposing a product page story into subtasks and using lightweight AI-guided planning during sprint meetings. The closing encourages experimentation, thoughtful review in retrospectives, and avoiding reliance on a single estimate. Key takeaways: - AI-assisted estimation uses signals like size, complexity, uncertainty, dependencies, and risk to predict effort. - Start with clean, historical data and track metrics such as average error, bias, and cross-team variability. - Approaches include AI as an assistant, a learn-from-history model with human calibration, or a hybrid that decomposes stories into tasks. - A practical 5-step plan: prepare backlog, clean data, define features, run a 3–5 story pilot, measure and adjust. - Success relies on data governance, privacy, human judgment, and a culture of continuous improvement; breaking down work helps AI capture micro-efforts and hidden dependencies. - Realistic use includes reduced planning variability and better sprint commitment; monitor for over-optimism and adjust accordingly. - AI-guided planning during sprint meetings can provide context-rich estimates that teams validate. Remeber you can contact me at [email protected]
  continue reading

5 epizódok

Artwork
iconMegosztás
 
Manage episode 508337994 series 3670252
A tartalmat a Andres Diaz biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Andres Diaz vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Summary: The episode explores using AI to assist with effort estimation in agile sprints. AI can turn each user story into observable signals (relative size, technical complexity, uncertainty, dependencies, risks) to predict effort in hours, days, or story points, aiming to reduce bias, speed up planning, and enable data-driven improvement. It stresses starting from existing data (delivered stories, past estimates, task durations, defects/rework) and keeping data clean and consistent. Three practical AI approaches are discussed: AI as a planning assistant, a learning model with human calibration, and a hybrid method that decomposes stories into tasks for consolidated estimates. A five-step action plan is provided: prepare the backlog and units, collect/clean data, define features, run a short pilot, and measure/calibrate. The text emphasizes data governance, privacy, and a culture of continuous improvement, noting that breaking stories into tasks helps AI capture micro-efforts and reveal hidden dependencies. Realistic expectations are that AI reduces variability and fosters informed discussion rather than delivering perfect predictions. Practical examples include decomposing a product page story into subtasks and using lightweight AI-guided planning during sprint meetings. The closing encourages experimentation, thoughtful review in retrospectives, and avoiding reliance on a single estimate. Key takeaways: - AI-assisted estimation uses signals like size, complexity, uncertainty, dependencies, and risk to predict effort. - Start with clean, historical data and track metrics such as average error, bias, and cross-team variability. - Approaches include AI as an assistant, a learn-from-history model with human calibration, or a hybrid that decomposes stories into tasks. - A practical 5-step plan: prepare backlog, clean data, define features, run a 3–5 story pilot, measure and adjust. - Success relies on data governance, privacy, human judgment, and a culture of continuous improvement; breaking down work helps AI capture micro-efforts and hidden dependencies. - Realistic use includes reduced planning variability and better sprint commitment; monitor for over-optimism and adjust accordingly. - AI-guided planning during sprint meetings can provide context-rich estimates that teams validate. Remeber you can contact me at [email protected]
  continue reading

5 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás