Artwork

A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Anatomy of a domain library

16:11
 
Megosztás
 

Manage episode 295783831 series 2921809
A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 epizódok

Artwork

Anatomy of a domain library

PyTorch Developer Podcast

34 subscribers

published

iconMegosztás
 
Manage episode 295783831 series 2921809
A tartalmat a PyTorch, Edward Yang, and Team PyTorch biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a PyTorch, Edward Yang, and Team PyTorch vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv