Artwork

A tartalmat a Tedy Nenu biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Tedy Nenu vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Joel David Hamkins on Infinity, Gödel's Theorems and Set Theory | Episode 1

1:16:49
 
Megosztás
 

Manage episode 394805560 series 3549261
A tartalmat a Tedy Nenu biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Tedy Nenu vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Joel David Hamkins is an American Mathematician who is currently Professor of Logic at the University of Oxford. He is well known for his important contributions in the fields of Mathematical Logic, Set Theory and Philosophy of Mathematics. Moreover, he is very popular in the mathematical community for being the highest rated user on MathOverflow.
Outline of the conversation:
00:00 Podcast Introduction
00:50 MathOverflow and books in progress
04:08 Mathphobia
05:58 What is mathematics and what sets it apart?
08:06 Is mathematics invented or discovered (more at 54:28)
09:24 How is it the case that Mathematics can be applied so successfully to the physical world?
12:37 Infinity in Mathematics
16:58 Cantor's Theorem: the real numbers cannot be enumerated
24:22 Russell's Paradox and the Cumulative Hierarchy of Sets
29:20 Hilbert's Program and Godel's Results
35:05 The First Incompleteness Theorem, formal and informal proofs and the connection between mathematical truths and mathematical proofs
40:50 Computer Assisted Proofs and mathematical insight
44:11 Do automated proofs kill the artistic side of Mathematics?
48:50 Infinite Time Turing Machines can settle Goldbach's Conjecture or the Riemann Hypothesis
54:28 Nonstandard models of arithmetic: different conceptions of the natural numbers
1:00:02 The Continuum Hypothesis and related undecidable questions, the Set-Theoretic Multiverse and the quest for new axioms
1:10:31 Minds and computers: Sir Roger Penrose's argument concerning consciousness
Twitter: https://twitter.com/tedynenu

  continue reading

15 epizódok

Artwork
iconMegosztás
 
Manage episode 394805560 series 3549261
A tartalmat a Tedy Nenu biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Tedy Nenu vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Joel David Hamkins is an American Mathematician who is currently Professor of Logic at the University of Oxford. He is well known for his important contributions in the fields of Mathematical Logic, Set Theory and Philosophy of Mathematics. Moreover, he is very popular in the mathematical community for being the highest rated user on MathOverflow.
Outline of the conversation:
00:00 Podcast Introduction
00:50 MathOverflow and books in progress
04:08 Mathphobia
05:58 What is mathematics and what sets it apart?
08:06 Is mathematics invented or discovered (more at 54:28)
09:24 How is it the case that Mathematics can be applied so successfully to the physical world?
12:37 Infinity in Mathematics
16:58 Cantor's Theorem: the real numbers cannot be enumerated
24:22 Russell's Paradox and the Cumulative Hierarchy of Sets
29:20 Hilbert's Program and Godel's Results
35:05 The First Incompleteness Theorem, formal and informal proofs and the connection between mathematical truths and mathematical proofs
40:50 Computer Assisted Proofs and mathematical insight
44:11 Do automated proofs kill the artistic side of Mathematics?
48:50 Infinite Time Turing Machines can settle Goldbach's Conjecture or the Riemann Hypothesis
54:28 Nonstandard models of arithmetic: different conceptions of the natural numbers
1:00:02 The Continuum Hypothesis and related undecidable questions, the Set-Theoretic Multiverse and the quest for new axioms
1:10:31 Minds and computers: Sir Roger Penrose's argument concerning consciousness
Twitter: https://twitter.com/tedynenu

  continue reading

15 epizódok

Tutti gli episodi

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv