Artwork

A tartalmat a Conviction biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Conviction vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

The Robotics Revolution, with Physical Intelligence’s Cofounder Chelsea Finn

35:14
 
Megosztás
 

Manage episode 472426317 series 3444082
A tartalmat a Conviction biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Conviction vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This week on No Priors, Elad speaks with Chelsea Finn, cofounder of Physical Intelligence and currently Associate Professor at Stanford, leading the Intelligence through Learning and Interaction Lab. They dive into how robots learn, the challenges of training AI models for the physical world, and the importance of diverse data in reaching generalizable intelligence. Chelsea explains the evolving landscape of open-source vs. closed-source robotics and where AI models are likely to have the biggest impact first. They also compare the development of robotics to self-driving cars, explore the future of humanoid and non-humanoid robots, and discuss what’s still missing for AI to function effectively in the real world. If you’re curious about the next phase of AI beyond the digital space, this episode is a must-listen.

Sign up for new podcasts every week. Email feedback to [email protected]

Follow us on Twitter: @NoPriorsPod | @Saranormous | @EladGil | @ChelseaFinn

Show Notes:

0:00 Introduction

0:31 Chelsea’s background in robotics

3:10 Physical Intelligence

5:13 Defining their approach and model architecture

7:39 Reaching generalizability and diversifying robot data

9:46 Open source vs. closed source

12:32 Where will PI’s models integrate first?

14:34 Humanoid as a form factor

16:28 Embodied intelligence

17:36 Key turning points in robotics progress

20:05 Hierarchical interactive robot and decision-making

22:21 Choosing data inputs

26:25 Self driving vs robotics market

28:37 Advice to robotics founders

29:24 Observational data and data generation

31:57 Future robotic forms

  continue reading

137 epizódok

Artwork
iconMegosztás
 
Manage episode 472426317 series 3444082
A tartalmat a Conviction biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Conviction vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This week on No Priors, Elad speaks with Chelsea Finn, cofounder of Physical Intelligence and currently Associate Professor at Stanford, leading the Intelligence through Learning and Interaction Lab. They dive into how robots learn, the challenges of training AI models for the physical world, and the importance of diverse data in reaching generalizable intelligence. Chelsea explains the evolving landscape of open-source vs. closed-source robotics and where AI models are likely to have the biggest impact first. They also compare the development of robotics to self-driving cars, explore the future of humanoid and non-humanoid robots, and discuss what’s still missing for AI to function effectively in the real world. If you’re curious about the next phase of AI beyond the digital space, this episode is a must-listen.

Sign up for new podcasts every week. Email feedback to [email protected]

Follow us on Twitter: @NoPriorsPod | @Saranormous | @EladGil | @ChelseaFinn

Show Notes:

0:00 Introduction

0:31 Chelsea’s background in robotics

3:10 Physical Intelligence

5:13 Defining their approach and model architecture

7:39 Reaching generalizability and diversifying robot data

9:46 Open source vs. closed source

12:32 Where will PI’s models integrate first?

14:34 Humanoid as a form factor

16:28 Embodied intelligence

17:36 Key turning points in robotics progress

20:05 Hierarchical interactive robot and decision-making

22:21 Choosing data inputs

26:25 Self driving vs robotics market

28:37 Advice to robotics founders

29:24 Observational data and data generation

31:57 Future robotic forms

  continue reading

137 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás