Artwork

A tartalmat a Ludwig-Maximilians-Universität München and MCMP Team biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Ludwig-Maximilians-Universität München and MCMP Team vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Discernibility from a countable perspective

32:32
 
Megosztás
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117464 series 2929680
A tartalmat a Ludwig-Maximilians-Universität München and MCMP Team biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Ludwig-Maximilians-Universität München and MCMP Team vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Kate Hodesdon (Nancy) gives a talk at the Workshop on Mathematics: Objectivity by Representation (11 November, 2014) titled "Discernibility from a countable perspective". Abstract: In this talk I discuss formal methods for discerning between uncountably many objects with a countable language, building on recent work of James Ladyman, Øystein Linnebo and Richard Pettigrew. In particular, I show how stability theory provides the resources to characterize theories in which this is possible, and discuss the limitations of the stability theoretic approach.
  continue reading

22 epizódok

Artwork
iconMegosztás
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 13, 2022 23:55 (2y ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 293117464 series 2929680
A tartalmat a Ludwig-Maximilians-Universität München and MCMP Team biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Ludwig-Maximilians-Universität München and MCMP Team vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Kate Hodesdon (Nancy) gives a talk at the Workshop on Mathematics: Objectivity by Representation (11 November, 2014) titled "Discernibility from a countable perspective". Abstract: In this talk I discuss formal methods for discerning between uncountably many objects with a countable language, building on recent work of James Ladyman, Øystein Linnebo and Richard Pettigrew. In particular, I show how stability theory provides the resources to characterize theories in which this is possible, and discuss the limitations of the stability theoretic approach.
  continue reading

22 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv