Artwork

A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

"We Are Very Early in Our Work With LLMs," - Prem Ramaswami, Head of Data Commons at Google

13:53
 
Megosztás
 

Manage episode 513589911 series 3474148
A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

373 epizódok

Artwork
iconMegosztás
 
Manage episode 513589911 series 3474148
A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/we-are-very-early-in-our-work-with-llms-prem-ramaswami-head-of-data-commons-at-google.
Google's Head of Data Commons joined HackerNoon to discuss grounding AI in verifiable data, and why "we are very early with LLMs," MCP's open approach.
Check more stories related to machine-learning at: https://hackernoon.com/c/machine-learning. You can also check exclusive content about #llm, #data, #hackernoon-top-story, #interview, #work-with-llms, #data-with-llm, #accurate-data-with-llms, #datasets, and more.
This story was written by: @David. Learn more about this writer by checking @David's about page, and for more stories, please visit hackernoon.com.
Google Data Commons launched an MCP server to ground AI in verifiable public data from trusted sources like the UN, World Bank, and Census Bureau. The clever part: users' own LLMs do the translation work, so Google's compute isn't involved. Prem Ramaswami argues we're still "very early" with LLMs (Google's transformer paper was only 2017) and the answer to hallucinations is "try all of the above" - combining language models with robust, auditable data sources. The service is free, integrates hundreds of datasets with transparent provenance, and chose Anthropic's open MCP standard over building proprietary infrastructure. Key challenge: expanding beyond strong US/OECD coverage to make grounded AI systems globally representative.Retry

  continue reading

373 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás