Artwork

A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Why Humans Are Still Powering AI [Sponsored]

24:19
 
Megosztás
 

Manage episode 517424438 series 2803422
A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Ever wonder where AI models actually get their "intelligence"? We reveal the dirty secret of Silicon Valley: behind every impressive AI system are thousands of real humans providing crucial data, feedback, and expertise.Guest: Phelim Bradley, CEO and Co-founder of ProlificPhelim Bradley runs Prolific, a platform that connects AI companies with verified human experts who help train and evaluate their models. Think of it as a sophisticated marketplace matching the right human expertise to the right AI task - whether that's doctors evaluating medical chatbots or coders reviewing AI-generated software.Prolific: https://prolific.com/?utm_source=mlsthttps://uk.linkedin.com/in/phelim-bradley-84300826The discussion dives into:**The human data pipeline**: How AI companies rely on human intelligence to train, refine, and validate their models - something rarely discussed openly**Quality over quantity**: Why paying humans well and treating them as partners (not commodities) produces better AI training data**The matching challenge**: How Prolific solves the complex problem of finding the right expert for each specific task, similar to matching Uber drivers to riders but with deep expertise requirements**Future of work**: What it means when human expertise becomes an on-demand service, and why this might actually create more opportunities rather than fewer**Geopolitical implications**: Why the centralization of AI development in US tech companies should concern Europe and the UK

  continue reading

237 epizódok

Artwork
iconMegosztás
 
Manage episode 517424438 series 2803422
A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Ever wonder where AI models actually get their "intelligence"? We reveal the dirty secret of Silicon Valley: behind every impressive AI system are thousands of real humans providing crucial data, feedback, and expertise.Guest: Phelim Bradley, CEO and Co-founder of ProlificPhelim Bradley runs Prolific, a platform that connects AI companies with verified human experts who help train and evaluate their models. Think of it as a sophisticated marketplace matching the right human expertise to the right AI task - whether that's doctors evaluating medical chatbots or coders reviewing AI-generated software.Prolific: https://prolific.com/?utm_source=mlsthttps://uk.linkedin.com/in/phelim-bradley-84300826The discussion dives into:**The human data pipeline**: How AI companies rely on human intelligence to train, refine, and validate their models - something rarely discussed openly**Quality over quantity**: Why paying humans well and treating them as partners (not commodities) produces better AI training data**The matching challenge**: How Prolific solves the complex problem of finding the right expert for each specific task, similar to matching Uber drivers to riders but with deep expertise requirements**Future of work**: What it means when human expertise becomes an on-demand service, and why this might actually create more opportunities rather than fewer**Geopolitical implications**: Why the centralization of AI development in US tech companies should concern Europe and the UK

  continue reading

237 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás