Artwork

A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

New top score on ARC-AGI-2-pub (29.4%) - Jeremy Berman

1:08:27
 
Megosztás
 

Manage episode 508765959 series 2803422
A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

We need AI systems to synthesise new knowledge, not just compress the data they see. Jeremy Berman, is a research scientist at Reflection AI and recent winner of the ARC-AGI v2 public leaderboard.**SPONSOR MESSAGES**—Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyOct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst— Imagine trying to teach an AI to think like a human i.e. solving puzzles that are easy for us but stump even the smartest models. Jeremy's evolutionary approach—evolving natural language descriptions instead of python code like his last version—landed him at the top with about 30% accuracy on the ARCv2.We discuss why current AIs are like "stochastic parrots" that memorize but struggle to truly reason or innovate as well as big ideas like building "knowledge trees" for real understanding, the limits of neural networks versus symbolic systems, and whether we can train models to synthesize new ideas without forgetting everything else. Jeremy Berman:https://x.com/jerber888TRANSCRIPT:https://app.rescript.info/public/share/qvCioZeZJ4Q_NlR66m-hNUZnh-qWlUJcS15Wc2OGwD0TOC:Introduction and Overview [00:00:00]ARC v1 Solution [00:07:20]Evolutionary Python Approach [00:08:00]Trade-offs in Depth vs. Breadth [00:10:33]ARC v2 Improvements [00:11:45]Natural Language Shift [00:12:35]Model Thinking Enhancements [00:13:05]Neural Networks vs. Symbolism Debate [00:14:24]Turing Completeness Discussion [00:15:24]Continual Learning Challenges [00:19:12]Reasoning and Intelligence [00:29:33]Knowledge Trees and Synthesis [00:50:15]Creativity and Invention [00:56:41]Future Directions and Closing [01:02:30]REFS:Jeremy’s 2024 article on winning ARCAGI1-pubhttps://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agiGetting 50% (SoTA) on ARC-AGI with GPT-4o [Greenblatt]https://blog.redwoodresearch.org/p/getting-50-sota-on-arc-agi-with-gpt https://www.youtube.com/watch?v=z9j3wB1RRGA [his MLST interview]A Thousand Brains: A New Theory of Intelligence [Hawkins]https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/1541675819https://www.youtube.com/watch?v=6VQILbDqaI4 [MLST interview]Francois Chollet + Mike Knoop’s labhttps://ndea.com/On the Measure of Intelligence [Chollet]https://arxiv.org/abs/1911.01547On the Biology of a Large Language Model [Anthropic]https://transformer-circuits.pub/2025/attribution-graphs/biology.html The ARChitects [won 2024 ARC-AGI-1-private]https://www.youtube.com/watch?v=mTX_sAq--zY Connectionism critique 1998 [Fodor/Pylshyn]https://uh.edu/~garson/F&P1.PDF Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis [Kumar/Stanley]https://arxiv.org/pdf/2505.11581 AlphaEvolve interview (also program synthesis)https://www.youtube.com/watch?v=vC9nAosXrJw ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More Efficiently [Lange et al]https://sakana.ai/shinka-evolve/ Deep learning with Python Rev 3 [Chollet] - READ CHAPTER 19 NOW!https://deeplearningwithpython.io/

  continue reading

233 epizódok

Artwork
iconMegosztás
 
Manage episode 508765959 series 2803422
A tartalmat a Machine Learning Street Talk (MLST) biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Machine Learning Street Talk (MLST) vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

We need AI systems to synthesise new knowledge, not just compress the data they see. Jeremy Berman, is a research scientist at Reflection AI and recent winner of the ARC-AGI v2 public leaderboard.**SPONSOR MESSAGES**—Take the Prolific human data survey - https://www.prolific.com/humandatasurvey?utm_source=mlst and be the first to see the results and benchmark their practices against the wider community!—cyber•Fund https://cyber.fund/?utm_source=mlst is a founder-led investment firm accelerating the cybernetic economyOct SF conference - https://dagihouse.com/?utm_source=mlst - Joscha Bach keynoting(!) + OAI, Anthropic, NVDA,++Hiring a SF VC Principal: https://talent.cyber.fund/companies/cyber-fund-2/jobs/57674170-ai-investment-principal#content?utm_source=mlstSubmit investment deck: https://cyber.fund/contact?utm_source=mlst— Imagine trying to teach an AI to think like a human i.e. solving puzzles that are easy for us but stump even the smartest models. Jeremy's evolutionary approach—evolving natural language descriptions instead of python code like his last version—landed him at the top with about 30% accuracy on the ARCv2.We discuss why current AIs are like "stochastic parrots" that memorize but struggle to truly reason or innovate as well as big ideas like building "knowledge trees" for real understanding, the limits of neural networks versus symbolic systems, and whether we can train models to synthesize new ideas without forgetting everything else. Jeremy Berman:https://x.com/jerber888TRANSCRIPT:https://app.rescript.info/public/share/qvCioZeZJ4Q_NlR66m-hNUZnh-qWlUJcS15Wc2OGwD0TOC:Introduction and Overview [00:00:00]ARC v1 Solution [00:07:20]Evolutionary Python Approach [00:08:00]Trade-offs in Depth vs. Breadth [00:10:33]ARC v2 Improvements [00:11:45]Natural Language Shift [00:12:35]Model Thinking Enhancements [00:13:05]Neural Networks vs. Symbolism Debate [00:14:24]Turing Completeness Discussion [00:15:24]Continual Learning Challenges [00:19:12]Reasoning and Intelligence [00:29:33]Knowledge Trees and Synthesis [00:50:15]Creativity and Invention [00:56:41]Future Directions and Closing [01:02:30]REFS:Jeremy’s 2024 article on winning ARCAGI1-pubhttps://jeremyberman.substack.com/p/how-i-got-a-record-536-on-arc-agiGetting 50% (SoTA) on ARC-AGI with GPT-4o [Greenblatt]https://blog.redwoodresearch.org/p/getting-50-sota-on-arc-agi-with-gpt https://www.youtube.com/watch?v=z9j3wB1RRGA [his MLST interview]A Thousand Brains: A New Theory of Intelligence [Hawkins]https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/1541675819https://www.youtube.com/watch?v=6VQILbDqaI4 [MLST interview]Francois Chollet + Mike Knoop’s labhttps://ndea.com/On the Measure of Intelligence [Chollet]https://arxiv.org/abs/1911.01547On the Biology of a Large Language Model [Anthropic]https://transformer-circuits.pub/2025/attribution-graphs/biology.html The ARChitects [won 2024 ARC-AGI-1-private]https://www.youtube.com/watch?v=mTX_sAq--zY Connectionism critique 1998 [Fodor/Pylshyn]https://uh.edu/~garson/F&P1.PDF Questioning Representational Optimism in Deep Learning: The Fractured Entangled Representation Hypothesis [Kumar/Stanley]https://arxiv.org/pdf/2505.11581 AlphaEvolve interview (also program synthesis)https://www.youtube.com/watch?v=vC9nAosXrJw ShinkaEvolve: Evolving New Algorithms with LLMs, Orders of Magnitude More Efficiently [Lange et al]https://sakana.ai/shinka-evolve/ Deep learning with Python Rev 3 [Chollet] - READ CHAPTER 19 NOW!https://deeplearningwithpython.io/

  continue reading

233 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás