Artwork

A tartalmat a LessWrong biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a LessWrong vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

“Training a Reward Hacker Despite Perfect Labels” by ariana_azarbal, vgillioz, TurnTrout

13:19
 
Megosztás
 

Manage episode 502469394 series 3364758
A tartalmat a LessWrong biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a LessWrong vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Summary: Perfectly labeled outcomes in training can still boost reward hacking tendencies in generalization. This can hold even when the train/test sets are drawn from the exact same distribution. We induce this surprising effect via a form of context distillation, which we call re-contextualization:
  1. Generate model completions with a hack-encouraging system prompt + neutral user prompt.
  2. Filter the completions to remove hacks.
  3. Train on these prompt-completion pairs with the system prompt removed.
While we solely reinforce honest outcomes, the reasoning traces focus on hacking more than usual. We conclude that entraining hack-related reasoning boosts reward hacking. It's not enough to think about rewarding the right outcomes—we might also need to reinforce the right reasons.
Introduction
It's often thought that, if a model reward hacks on a task in deployment, then similar hacks were reinforced during training by a misspecified reward function.[1] In METR's report on reward hacking [...]
---
Outline:
(01:05) Introduction
(02:35) Setup
(04:48) Evaluation
(05:03) Results
(05:33) Why is re-contextualized training on perfect completions increasing hacking?
(07:44) What happens when you train on purely hack samples?
(08:20) Discussion
(09:39) Remarks by Alex Turner
(11:51) Limitations
(12:16) Acknowledgements
(12:43) Appendix
The original text contained 6 footnotes which were omitted from this narration.
---
First published:
August 14th, 2025
Source:
https://www.lesswrong.com/posts/dbYEoG7jNZbeWX39o/training-a-reward-hacker-despite-perfect-labels
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph
Bar graph
Bar graph showing
  continue reading

601 epizódok

Artwork
iconMegosztás
 
Manage episode 502469394 series 3364758
A tartalmat a LessWrong biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a LessWrong vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Summary: Perfectly labeled outcomes in training can still boost reward hacking tendencies in generalization. This can hold even when the train/test sets are drawn from the exact same distribution. We induce this surprising effect via a form of context distillation, which we call re-contextualization:
  1. Generate model completions with a hack-encouraging system prompt + neutral user prompt.
  2. Filter the completions to remove hacks.
  3. Train on these prompt-completion pairs with the system prompt removed.
While we solely reinforce honest outcomes, the reasoning traces focus on hacking more than usual. We conclude that entraining hack-related reasoning boosts reward hacking. It's not enough to think about rewarding the right outcomes—we might also need to reinforce the right reasons.
Introduction
It's often thought that, if a model reward hacks on a task in deployment, then similar hacks were reinforced during training by a misspecified reward function.[1] In METR's report on reward hacking [...]
---
Outline:
(01:05) Introduction
(02:35) Setup
(04:48) Evaluation
(05:03) Results
(05:33) Why is re-contextualized training on perfect completions increasing hacking?
(07:44) What happens when you train on purely hack samples?
(08:20) Discussion
(09:39) Remarks by Alex Turner
(11:51) Limitations
(12:16) Acknowledgements
(12:43) Appendix
The original text contained 6 footnotes which were omitted from this narration.
---
First published:
August 14th, 2025
Source:
https://www.lesswrong.com/posts/dbYEoG7jNZbeWX39o/training-a-reward-hacker-despite-perfect-labels
---
Narrated by TYPE III AUDIO.
---
Images from the article:
Bar graph
Bar graph
Bar graph showing
  continue reading

601 epizódok

All episodes

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás