Artwork

A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

#122 Learning and Teaching in the Age of AI, with Hugo Bowne-Anderson

1:23:10
 
Megosztás
 

Manage episode 457627039 series 2635823
A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Effective data science education requires feedback and rapid iteration.
  • Building LLM applications presents unique challenges and opportunities.
  • The software development lifecycle for AI differs from traditional methods.
  • Collaboration between data scientists and software engineers is crucial.
  • Hugo's new course focuses on practical applications of LLMs.
  • Continuous learning is essential in the fast-evolving tech landscape.
  • Engaging learners through practical exercises enhances education.
  • POC purgatory refers to the challenges faced in deploying LLM-powered software.
  • Focusing on first principles can help overcome integration issues in AI.
  • Aspiring data scientists should prioritize problem-solving over specific tools.
  • Engagement with different parts of an organization is crucial for data scientists.
  • Quick paths to value generation can help gain buy-in for data projects.
  • Multimodal models are an exciting trend in AI development.
  • Probabilistic programming has potential for future growth in data science.
  • Continuous learning and curiosity are vital in the evolving field of data science.

Chapters:

09:13 Hugo's Journey in Data Science and Education

14:57 The Appeal of Bayesian Statistics

19:36 Learning and Teaching in Data Science

24:53 Key Ingredients for Effective Data Science Education

28:44 Podcasting Journey and Insights

36:10 Building LLM Applications: Course Overview

42:08 Navigating the Software Development Lifecycle

48:06 Overcoming Proof of Concept Purgatory

55:35 Guidance for Aspiring Data Scientists

01:03:25 Exciting Trends in Data Science and AI

01:10:51 Balancing Multiple Roles in Data Science

01:15:23 Envisioning Accessible Data Science for All

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke, Robert Flannery, Rasmus Hindström, Stefan, Corey Abshire and Mike Loncaric.

Links from the show:


Transcript:

This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.

  continue reading

138 epizódok

Artwork
iconMegosztás
 
Manage episode 457627039 series 2635823
A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • Effective data science education requires feedback and rapid iteration.
  • Building LLM applications presents unique challenges and opportunities.
  • The software development lifecycle for AI differs from traditional methods.
  • Collaboration between data scientists and software engineers is crucial.
  • Hugo's new course focuses on practical applications of LLMs.
  • Continuous learning is essential in the fast-evolving tech landscape.
  • Engaging learners through practical exercises enhances education.
  • POC purgatory refers to the challenges faced in deploying LLM-powered software.
  • Focusing on first principles can help overcome integration issues in AI.
  • Aspiring data scientists should prioritize problem-solving over specific tools.
  • Engagement with different parts of an organization is crucial for data scientists.
  • Quick paths to value generation can help gain buy-in for data projects.
  • Multimodal models are an exciting trend in AI development.
  • Probabilistic programming has potential for future growth in data science.
  • Continuous learning and curiosity are vital in the evolving field of data science.

Chapters:

09:13 Hugo's Journey in Data Science and Education

14:57 The Appeal of Bayesian Statistics

19:36 Learning and Teaching in Data Science

24:53 Key Ingredients for Effective Data Science Education

28:44 Podcasting Journey and Insights

36:10 Building LLM Applications: Course Overview

42:08 Navigating the Software Development Lifecycle

48:06 Overcoming Proof of Concept Purgatory

55:35 Guidance for Aspiring Data Scientists

01:03:25 Exciting Trends in Data Science and AI

01:10:51 Balancing Multiple Roles in Data Science

01:15:23 Envisioning Accessible Data Science for All

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke, Robert Flannery, Rasmus Hindström, Stefan, Corey Abshire and Mike Loncaric.

Links from the show:


Transcript:

This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.

  continue reading

138 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás