Artwork

A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

#118 Exploring the Future of Stan, with Charles Margossian & Brian Ward

58:51
 
Megosztás
 

Manage episode 447611260 series 2969169
A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • User experience is crucial for the adoption of Stan.
  • Recent innovations include adding tuples to the Stan language, new features and improved error messages.
  • Tuples allow for more efficient data handling in Stan.
  • Beginners often struggle with the compiled nature of Stan.
  • Improving error messages is crucial for user experience.
  • BridgeStan allows for integration with other programming languages and makes it very easy for people to use Stan models.
  • Community engagement is vital for the development of Stan.
  • New samplers are being developed to enhance performance.
  • The future of Stan includes more user-friendly features.

Chapters:

00:00 Introduction to the Live Episode

02:55 Meet the Stan Core Developers

05:47 Brian Ward's Journey into Bayesian Statistics

09:10 Charles Margossian's Contributions to Stan

11:49 Recent Projects and Innovations in Stan

15:07 User-Friendly Features and Enhancements

18:11 Understanding Tuples and Their Importance

21:06 Challenges for Beginners in Stan

24:08 Pedagogical Approaches to Bayesian Statistics

30:54 Optimizing Monte Carlo Estimators

32:24 Reimagining Stan's Structure

34:21 The Promise of Automatic Reparameterization

35:49 Exploring BridgeStan

40:29 The Future of Samplers in Stan

43:45 Evaluating New Algorithms

47:01 Specific Algorithms for Unique Problems

50:00 Understanding Model Performance

54:21 The Impact of Stan on Bayesian Research

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke and Robert Flannery.

Links from the show:


Transcript

This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.

  continue reading

137 epizódok

Artwork
iconMegosztás
 
Manage episode 447611260 series 2969169
A tartalmat a Alexandre Andorra biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alexandre Andorra vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Proudly sponsored by PyMC Labs, the Bayesian Consultancy. Book a call, or get in touch!


Our theme music is « Good Bayesian », by Baba Brinkman (feat MC Lars and Mega Ran). Check out his awesome work!

Visit our Patreon page to unlock exclusive Bayesian swag ;)

Takeaways:

  • User experience is crucial for the adoption of Stan.
  • Recent innovations include adding tuples to the Stan language, new features and improved error messages.
  • Tuples allow for more efficient data handling in Stan.
  • Beginners often struggle with the compiled nature of Stan.
  • Improving error messages is crucial for user experience.
  • BridgeStan allows for integration with other programming languages and makes it very easy for people to use Stan models.
  • Community engagement is vital for the development of Stan.
  • New samplers are being developed to enhance performance.
  • The future of Stan includes more user-friendly features.

Chapters:

00:00 Introduction to the Live Episode

02:55 Meet the Stan Core Developers

05:47 Brian Ward's Journey into Bayesian Statistics

09:10 Charles Margossian's Contributions to Stan

11:49 Recent Projects and Innovations in Stan

15:07 User-Friendly Features and Enhancements

18:11 Understanding Tuples and Their Importance

21:06 Challenges for Beginners in Stan

24:08 Pedagogical Approaches to Bayesian Statistics

30:54 Optimizing Monte Carlo Estimators

32:24 Reimagining Stan's Structure

34:21 The Promise of Automatic Reparameterization

35:49 Exploring BridgeStan

40:29 The Future of Samplers in Stan

43:45 Evaluating New Algorithms

47:01 Specific Algorithms for Unique Problems

50:00 Understanding Model Performance

54:21 The Impact of Stan on Bayesian Research

Thank you to my Patrons for making this episode possible!

Yusuke Saito, Avi Bryant, Ero Carrera, Giuliano Cruz, Tim Gasser, James Wade, Tradd Salvo, William Benton, James Ahloy, Robin Taylor,, Chad Scherrer, Zwelithini Tunyiswa, Bertrand Wilden, James Thompson, Stephen Oates, Gian Luca Di Tanna, Jack Wells, Matthew Maldonado, Ian Costley, Ally Salim, Larry Gill, Ian Moran, Paul Oreto, Colin Caprani, Colin Carroll, Nathaniel Burbank, Michael Osthege, Rémi Louf, Clive Edelsten, Henri Wallen, Hugo Botha, Vinh Nguyen, Marcin Elantkowski, Adam C. Smith, Will Kurt, Andrew Moskowitz, Hector Munoz, Marco Gorelli, Simon Kessell, Bradley Rode, Patrick Kelley, Rick Anderson, Casper de Bruin, Philippe Labonde, Michael Hankin, Cameron Smith, Tomáš Frýda, Ryan Wesslen, Andreas Netti, Riley King, Yoshiyuki Hamajima, Sven De Maeyer, Michael DeCrescenzo, Fergal M, Mason Yahr, Naoya Kanai, Steven Rowland, Aubrey Clayton, Jeannine Sue, Omri Har Shemesh, Scott Anthony Robson, Robert Yolken, Or Duek, Pavel Dusek, Paul Cox, Andreas Kröpelin, Raphaël R, Nicolas Rode, Gabriel Stechschulte, Arkady, Kurt TeKolste, Gergely Juhasz, Marcus Nölke, Maggi Mackintosh, Grant Pezzolesi, Avram Aelony, Joshua Meehl, Javier Sabio, Kristian Higgins, Alex Jones, Gregorio Aguilar, Matt Rosinski, Bart Trudeau, Luis Fonseca, Dante Gates, Matt Niccolls, Maksim Kuznecov, Michael Thomas, Luke Gorrie, Cory Kiser, Julio, Edvin Saveljev, Frederick Ayala, Jeffrey Powell, Gal Kampel, Adan Romero, Will Geary, Blake Walters, Jonathan Morgan, Francesco Madrisotti, Ivy Huang, Gary Clarke and Robert Flannery.

Links from the show:


Transcript

This is an automatic transcript and may therefore contain errors. Please get in touch if you're willing to correct them.

  continue reading

137 epizódok

Усі епізоди

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás