Artwork

A tartalmat a Kai Kunze biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kai Kunze vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

MobileHCI 2024: Head ’n Shoulder: Gesture-Driven Biking Through Capacitive Sensing Garments to Innovate Hands-Free Interaction

9:33
 
Megosztás
 

Manage episode 446000181 series 3605621
A tartalmat a Kai Kunze biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kai Kunze vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Daniel Geißler, Hymalai Bello, Esther Zahn, Emil Woop, Bo Zhou, Paul Lukowicz, and Jakob Karolus. 2024. Head 'n Shoulder: Gesture-Driven Biking Through Capacitive Sensing Garments to Innovate Hands-Free Interaction. Proc. ACM Hum.-Comput. Interact. 8, MHCI, Article 265 (September 2024), 20 pages. https://doi.org/10.1145/3676510

Distractions caused by digital devices are increasingly causing dangerous situations on the road, particularly for more vulnerable road users like cyclists. While researchers have been exploring ways to enable richer interaction scenarios on the bike, safety concerns are frequently neglected and compromised. In this work, we propose Head 'n Shoulder, a gesture-driven approach to bike interaction without affecting bike control, based on a wearable garment that allows hands- and eyes-free interaction with digital devices through integrated capacitive sensors. It achieves an average accuracy of 97% in the final iteration, evaluated on 14 participants. Head 'n Shoulder does not rely on direct pressure sensing, allowing users to wear their everyday garments on top or underneath, not affecting recognition accuracy. Our work introduces a promising research direction: easily deployable smart garments with a minimal set of gestures suited for most bike interaction scenarios, sustaining the rider's comfort and safety.

https://dl.acm.org/doi/10.1145/3676510

  continue reading

35 epizódok

Artwork
iconMegosztás
 
Manage episode 446000181 series 3605621
A tartalmat a Kai Kunze biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Kai Kunze vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Daniel Geißler, Hymalai Bello, Esther Zahn, Emil Woop, Bo Zhou, Paul Lukowicz, and Jakob Karolus. 2024. Head 'n Shoulder: Gesture-Driven Biking Through Capacitive Sensing Garments to Innovate Hands-Free Interaction. Proc. ACM Hum.-Comput. Interact. 8, MHCI, Article 265 (September 2024), 20 pages. https://doi.org/10.1145/3676510

Distractions caused by digital devices are increasingly causing dangerous situations on the road, particularly for more vulnerable road users like cyclists. While researchers have been exploring ways to enable richer interaction scenarios on the bike, safety concerns are frequently neglected and compromised. In this work, we propose Head 'n Shoulder, a gesture-driven approach to bike interaction without affecting bike control, based on a wearable garment that allows hands- and eyes-free interaction with digital devices through integrated capacitive sensors. It achieves an average accuracy of 97% in the final iteration, evaluated on 14 participants. Head 'n Shoulder does not rely on direct pressure sensing, allowing users to wear their everyday garments on top or underneath, not affecting recognition accuracy. Our work introduces a promising research direction: easily deployable smart garments with a minimal set of gestures suited for most bike interaction scenarios, sustaining the rider's comfort and safety.

https://dl.acm.org/doi/10.1145/3676510

  continue reading

35 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás