Artwork

A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

ROMA: Random Overlook Mastering ATFM

39:16
 
Megosztás
 

Manage episode 155955993 series 1172274
A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Speaker: C. Lancia Abstract: Consider the arrival process defined by t_i=i + \xi_i, where \xi_i are i.i.d random variables. First introduced in the 50's, this arrival process is of remarkable importance in Air Traffic Flow Management and other transportation systems, where scheduled arrivals are intrinsically subject to random variations; other frameworks where this model has proved to be capable of a good description of actual job arrivals include health care and crane handling systems. This talk is ideally divided in two parts. In the first half, I will show through numerical simulations two of the most important features of the model, namely, the insensitivity with respect to the nature (i.e. the law) of the delays \xi_i and the extremely valuable goodness of fit of simulated queue length distribution against the empirical distribution obtained from actual arrivals at London Heathrow airport. Further, I will show that the congestion related to this process is very different from the congestion of a Poisson process. This is due to the negative autocorrelation of the process. In the second part, I will restrict the analysis to the case where the delays \xi_i are exponentially distributed. In this context, I will show some preliminary results on a possible strategy to find the stationary distribution of the queue length using a bivariate generating function.
  continue reading

63 epizódok

Artwork
iconMegosztás
 
Manage episode 155955993 series 1172274
A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Speaker: C. Lancia Abstract: Consider the arrival process defined by t_i=i + \xi_i, where \xi_i are i.i.d random variables. First introduced in the 50's, this arrival process is of remarkable importance in Air Traffic Flow Management and other transportation systems, where scheduled arrivals are intrinsically subject to random variations; other frameworks where this model has proved to be capable of a good description of actual job arrivals include health care and crane handling systems. This talk is ideally divided in two parts. In the first half, I will show through numerical simulations two of the most important features of the model, namely, the insensitivity with respect to the nature (i.e. the law) of the delays \xi_i and the extremely valuable goodness of fit of simulated queue length distribution against the empirical distribution obtained from actual arrivals at London Heathrow airport. Further, I will show that the congestion related to this process is very different from the congestion of a Poisson process. This is due to the negative autocorrelation of the process. In the second part, I will restrict the analysis to the case where the delays \xi_i are exponentially distributed. In this context, I will show some preliminary results on a possible strategy to find the stationary distribution of the queue length using a bivariate generating function.
  continue reading

63 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás