Artwork

A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Reaching Consensus about Gossip

1:12:03
 
Megosztás
 

Manage episode 151501847 series 1029398
A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Speaker: Prof. P. Thiran Abstract: An increasingly larger number of applications require networks to perform decentralized computations over distributed data. A representative problem of these “in-network processing” tasks is the distributed computation of the average of values present at nodes of a network, known as gossip algorithms. They have received recently significant attention across different communities (networking, algorithms, signal processing, control) because they constitute simple and robust methods for distributed information processing over networks. The first part of the talk is a survey some recent results on real-valued (analog) gossip algorithms. For many topologies that are realistic for wireless sensor networks, the classical nearest-neighbor gossip algorithms are slow, but a variation of these algorithms can be proven to order optimal (cost of O(n) messages for a network of n nodes) for some random geometric graphs. A second improvement, inspired by Uniform Gossip, allows to use uni-directional paths to compute the average, instead of requiring to route the average back and forth along the same path (one way paths are better suited in highly dynamic networks). The second part of the talk is devoted to quantized gossip on arbitrary connected networks. By their nature, quantized algorithms cannot produce a real, analog average, but they can (almost surely) reach consensus on the quantized interval that contains the average, in finite time. (This is a joint work with Florence Benezit, Martin Vetterli, Alex Dimakis, Vincent Blondel and John Tsitsiklis.)
  continue reading

63 epizódok

Artwork
iconMegosztás
 
Manage episode 151501847 series 1029398
A tartalmat a Hamilton Institute biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Hamilton Institute vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Speaker: Prof. P. Thiran Abstract: An increasingly larger number of applications require networks to perform decentralized computations over distributed data. A representative problem of these “in-network processing” tasks is the distributed computation of the average of values present at nodes of a network, known as gossip algorithms. They have received recently significant attention across different communities (networking, algorithms, signal processing, control) because they constitute simple and robust methods for distributed information processing over networks. The first part of the talk is a survey some recent results on real-valued (analog) gossip algorithms. For many topologies that are realistic for wireless sensor networks, the classical nearest-neighbor gossip algorithms are slow, but a variation of these algorithms can be proven to order optimal (cost of O(n) messages for a network of n nodes) for some random geometric graphs. A second improvement, inspired by Uniform Gossip, allows to use uni-directional paths to compute the average, instead of requiring to route the average back and forth along the same path (one way paths are better suited in highly dynamic networks). The second part of the talk is devoted to quantized gossip on arbitrary connected networks. By their nature, quantized algorithms cannot produce a real, analog average, but they can (almost surely) reach consensus on the quantized interval that contains the average, in finite time. (This is a joint work with Florence Benezit, Martin Vetterli, Alex Dimakis, Vincent Blondel and John Tsitsiklis.)
  continue reading

63 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás