Artwork

A tartalmat a Dormant Knowledge biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Dormant Knowledge vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Episode 6: The Hidden Mathematics of Music

1:06:40
 
Megosztás
 

Manage episode 506452282 series 3682829
A tartalmat a Dormant Knowledge biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Dormant Knowledge vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Why does a piano sound different from a violin playing the same note? How do we decide what sounds "right" and what sounds "wrong"? Tonight, we explore the fascinating world of tuning systems—the mathematical compromises that shape every piece of music you've ever heard.

Journey back 2,500 years to Pythagoras, who discovered that simple mathematical ratios create beautiful musical intervals. But his "perfect" system had a problem: it was mathematically impossible to make every interval sound good in every key. This led to centuries of creative solutions, cultural variations, and ultimately, the "great compromise" that became our modern musical standard.

Discover how different cultures approached the same mathematical puzzle in radically different ways. Arabic music embraced quarter-tones that don't exist on Western instruments. Indian classical music developed 22 microtonal intervals per octave. Indonesian gamelan orchestras created tuning systems so unique that each ensemble became its own musical universe.

Learn about the keyboard crisis that drove European instrument makers to desperate measures—organs with 19 keys per octave, split black keys, and other musical nightmares. Follow the story of how Bach's "Well-Tempered Clavier" helped convince the world to accept mathematical imperfection in exchange for musical freedom.

Explore how colonial expansion and recording technology spread equal temperament globally, nearly erasing centuries of microtonal traditions. Then discover how digital music is creating a renaissance of alternative tuning systems, from historically authentic performances to completely invented scales that divide octaves into 31, 53, or any number of parts.

From the physics of sound waves to the psychology of musical perception, from ancient Greek mathematics to modern xenharmonic experiments, this episode reveals how every song you've ever loved represents centuries of human ingenuity wrestling with the beautiful impossibility of making mathematics and music work together perfectly.

Perfect for: Anyone curious about the hidden science behind music, the cultural diversity of musical systems, or how mathematical principles shape artistic expression.

  continue reading

8 epizódok

Artwork
iconMegosztás
 
Manage episode 506452282 series 3682829
A tartalmat a Dormant Knowledge biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Dormant Knowledge vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Why does a piano sound different from a violin playing the same note? How do we decide what sounds "right" and what sounds "wrong"? Tonight, we explore the fascinating world of tuning systems—the mathematical compromises that shape every piece of music you've ever heard.

Journey back 2,500 years to Pythagoras, who discovered that simple mathematical ratios create beautiful musical intervals. But his "perfect" system had a problem: it was mathematically impossible to make every interval sound good in every key. This led to centuries of creative solutions, cultural variations, and ultimately, the "great compromise" that became our modern musical standard.

Discover how different cultures approached the same mathematical puzzle in radically different ways. Arabic music embraced quarter-tones that don't exist on Western instruments. Indian classical music developed 22 microtonal intervals per octave. Indonesian gamelan orchestras created tuning systems so unique that each ensemble became its own musical universe.

Learn about the keyboard crisis that drove European instrument makers to desperate measures—organs with 19 keys per octave, split black keys, and other musical nightmares. Follow the story of how Bach's "Well-Tempered Clavier" helped convince the world to accept mathematical imperfection in exchange for musical freedom.

Explore how colonial expansion and recording technology spread equal temperament globally, nearly erasing centuries of microtonal traditions. Then discover how digital music is creating a renaissance of alternative tuning systems, from historically authentic performances to completely invented scales that divide octaves into 31, 53, or any number of parts.

From the physics of sound waves to the psychology of musical perception, from ancient Greek mathematics to modern xenharmonic experiments, this episode reveals how every song you've ever loved represents centuries of human ingenuity wrestling with the beautiful impossibility of making mathematics and music work together perfectly.

Perfect for: Anyone curious about the hidden science behind music, the cultural diversity of musical systems, or how mathematical principles shape artistic expression.

  continue reading

8 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás