Artwork

A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Decoding Transformers' Superiority over RNNs in NLP Tasks

9:38
 
Megosztás
 

Manage episode 429693621 series 3474670
A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 epizódok

Artwork
iconMegosztás
 
Manage episode 429693621 series 3474670
A tartalmat a HackerNoon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a HackerNoon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/decoding-transformers-superiority-over-rnns-in-nlp-tasks.
Explore the intriguing journey from Recurrent Neural Networks (RNNs) to Transformers in the world of Natural Language Processing in our latest piece: 'The Trans
Check more stories related to data-science at: https://hackernoon.com/c/data-science. You can also check exclusive content about #nlp, #transformers, #llms, #natural-language-processing, #large-language-models, #rnn, #machine-learning, #neural-networks, and more.
This story was written by: @artemborin. Learn more about this writer by checking @artemborin's about page, and for more stories, please visit hackernoon.com.
Despite Recurrent Neural Networks (RNNs) designed to mirror certain aspects of human cognition, they've been surpassed by Transformers in Natural Language Processing tasks. The primary reasons include RNNs' issues with the vanishing gradient problem, difficulty in capturing long-range dependencies, and training inefficiencies. The hypothesis that larger RNNs could mitigate these issues falls short in practice due to computational inefficiencies and memory constraints. On the other hand, Transformers leverage their parallel processing ability and self-attention mechanism to efficiently handle sequences and train larger models. Thus, the evolution of AI architectures is driven not only by biological plausibility but also by practical considerations such as computational efficiency and scalability.

  continue reading

126 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás