Artwork

A tartalmat a Data Science Salon and Dat Science Salon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Data Science Salon and Dat Science Salon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Proactive by Design: How AI Predicts and Prevents Failures

21:06
 
Megosztás
 

Manage episode 489192873 series 2632853
A tartalmat a Data Science Salon and Dat Science Salon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Data Science Salon and Dat Science Salon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
In this episode of the Data Science Salon Podcast, we sit down with Vishnupriya Devarajulu, a Software Engineer specializing in AI- and ML-driven performance optimization for large-scale enterprise systems. With deep expertise in backend engineering, system diagnostics, and intelligent test automation, Priya is redefining how organizations build systems that don’t just respond—they anticipate. Priya walks us through her work designing adaptive frameworks that use machine learning to forecast system bottlenecks, improve latency, and optimize performance in high-stakes environments like finance. Key Highlights: Priya explains how she transforms traditional automation into self-learning, AI-powered frameworks using models like Random Forest to proactively identify and solve system issues. A deep dive into building ML-integrated performance pipelines that can adapt over time, dynamically suggest test scenarios, and drive smarter, faster, and more resilient systems. Insights into how predictive performance engineering is being applied in domains where speed and reliability are non-negotiable—and how to architect systems for it. Priya shares her perspective as a speaker and published researcher, and where she sees the future of intelligent infrastructure and AI-powered diagnostics heading next. Whether you're a systems engineer, ML practitioner, or enterprise leader exploring how AI can boost operational efficiency, this episode offers a powerful look at what happens when machine learning meets performance engineering. 🎧 Tune in to Episode 49 and discover how Priya is building the future of intelligent systems—one prediction at a time.
  continue reading

54 epizódok

Artwork
iconMegosztás
 
Manage episode 489192873 series 2632853
A tartalmat a Data Science Salon and Dat Science Salon biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Data Science Salon and Dat Science Salon vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
In this episode of the Data Science Salon Podcast, we sit down with Vishnupriya Devarajulu, a Software Engineer specializing in AI- and ML-driven performance optimization for large-scale enterprise systems. With deep expertise in backend engineering, system diagnostics, and intelligent test automation, Priya is redefining how organizations build systems that don’t just respond—they anticipate. Priya walks us through her work designing adaptive frameworks that use machine learning to forecast system bottlenecks, improve latency, and optimize performance in high-stakes environments like finance. Key Highlights: Priya explains how she transforms traditional automation into self-learning, AI-powered frameworks using models like Random Forest to proactively identify and solve system issues. A deep dive into building ML-integrated performance pipelines that can adapt over time, dynamically suggest test scenarios, and drive smarter, faster, and more resilient systems. Insights into how predictive performance engineering is being applied in domains where speed and reliability are non-negotiable—and how to architect systems for it. Priya shares her perspective as a speaker and published researcher, and where she sees the future of intelligent infrastructure and AI-powered diagnostics heading next. Whether you're a systems engineer, ML practitioner, or enterprise leader exploring how AI can boost operational efficiency, this episode offers a powerful look at what happens when machine learning meets performance engineering. 🎧 Tune in to Episode 49 and discover how Priya is building the future of intelligent systems—one prediction at a time.
  continue reading

54 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás