Artwork

A tartalmat a Jonathan Stephens biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Jonathan Stephens vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Exploring Depth Maps in Computer Vision

57:31
 
Megosztás
 

Manage episode 467288948 series 3364101
A tartalmat a Jonathan Stephens biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Jonathan Stephens vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this episode of Computer Vision Decoded, Jonathan Stephens and Jared Heinly explore the concept of depth maps in computer vision. They discuss the basics of depth and depth maps, their applications in smartphones, and the various types of depth maps. The conversation delves into the role of depth maps in photogrammetry and 3D reconstruction, as well as future trends in depth sensing and machine learning. The episode highlights the importance of depth maps in enhancing photography, gaming, and autonomous systems.

Key Takeaways:

  • Depth maps represent how far away objects are from a sensor.
  • Smartphones use depth maps for features like portrait mode.
  • There are multiple types of depth maps, including absolute and relative.
  • Depth maps are essential in photogrammetry for creating 3D models.
  • Machine learning is increasingly used for depth estimation.
  • Depth maps can be generated from various sensors, including LiDAR.
  • The resolution and baseline of cameras affect depth perception.
  • Depth maps are used in gaming for rendering and performance optimization.
  • Sensor fusion combines data from multiple sources for better accuracy.
  • The future of depth sensing will likely involve more machine learning applications.

Episode Chapters
00:00 Introduction to Depth Maps

00:13 Understanding Depth in Computer Vision

06:52 Applications of Depth Maps in Photography

07:53 Types of Depth Maps Created by Smartphones

08:31 Depth Measurement Techniques

16:00 Machine Learning and Depth Estimation

19:18 Absolute vs Relative Depth Maps

23:14 Disparity Maps and Depth Ordering

26:53 Depth Maps in Graphics and Gaming

31:24 Depth Maps in Photogrammetry

34:12 Utilizing Depth Maps in 3D Reconstruction

37:51 Sensor Fusion and SLAM Technologies

41:31 Future Trends in Depth Sensing

46:37 Innovations in Computational Photography

This episode is brought to you by EveryPoint. Learn more about how EveryPoint is building an infinitely scalable data collection and processing platform for the next generation of spatial computing applications and services. Learn more at https://www.everypoint.io

  continue reading

18 epizódok

Artwork
iconMegosztás
 
Manage episode 467288948 series 3364101
A tartalmat a Jonathan Stephens biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Jonathan Stephens vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

In this episode of Computer Vision Decoded, Jonathan Stephens and Jared Heinly explore the concept of depth maps in computer vision. They discuss the basics of depth and depth maps, their applications in smartphones, and the various types of depth maps. The conversation delves into the role of depth maps in photogrammetry and 3D reconstruction, as well as future trends in depth sensing and machine learning. The episode highlights the importance of depth maps in enhancing photography, gaming, and autonomous systems.

Key Takeaways:

  • Depth maps represent how far away objects are from a sensor.
  • Smartphones use depth maps for features like portrait mode.
  • There are multiple types of depth maps, including absolute and relative.
  • Depth maps are essential in photogrammetry for creating 3D models.
  • Machine learning is increasingly used for depth estimation.
  • Depth maps can be generated from various sensors, including LiDAR.
  • The resolution and baseline of cameras affect depth perception.
  • Depth maps are used in gaming for rendering and performance optimization.
  • Sensor fusion combines data from multiple sources for better accuracy.
  • The future of depth sensing will likely involve more machine learning applications.

Episode Chapters
00:00 Introduction to Depth Maps

00:13 Understanding Depth in Computer Vision

06:52 Applications of Depth Maps in Photography

07:53 Types of Depth Maps Created by Smartphones

08:31 Depth Measurement Techniques

16:00 Machine Learning and Depth Estimation

19:18 Absolute vs Relative Depth Maps

23:14 Disparity Maps and Depth Ordering

26:53 Depth Maps in Graphics and Gaming

31:24 Depth Maps in Photogrammetry

34:12 Utilizing Depth Maps in 3D Reconstruction

37:51 Sensor Fusion and SLAM Technologies

41:31 Future Trends in Depth Sensing

46:37 Innovations in Computational Photography

This episode is brought to you by EveryPoint. Learn more about how EveryPoint is building an infinitely scalable data collection and processing platform for the next generation of spatial computing applications and services. Learn more at https://www.everypoint.io

  continue reading

18 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás