Artwork

A tartalmat a Galileo biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Galileo vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Mastering Multi-Agent Systems | MongoDB’s Mikiko Chandrasekhar

40:23
 
Megosztás
 

Manage episode 496059378 series 3617425
A tartalmat a Galileo biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Galileo vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

AI agents offer unprecedented power, but mastering agent reliability is the ultimate challenge for agentic systems to actually work in production.

Mikiko Chandrashekar, Staff Developer Advocate at MongoDB, whose background spans the entire data-to-AI pipeline, unveils MongoDB's vision as the memory store for agents, supporting complex multi-agent systems from data storage and vector search to debugging chat logs. She highlights how MongoDB, reinforced by the acquisition of Voyage, empowers developers to build production-scale agents across various industries, from solo projects to major enterprises. This robust data layer is foundational to ensure agent performance and improve the end user experience.

Mikiko advocates for treating agents as software products, applying rigorous engineering best practices to ensure reliability, even for non-deterministic systems. She details MongoDB's unique position to balance GPU/CPU loads and manage data for performance and observability, including Galileo's integrations.

The conversation emphasizes the profound need to rethink observability, evaluations, and guardrails in the era of agents, showcasing Galileo's family of small language models for real-time guardrailing, Luna-2, and Insights Engine for automated failure analysis. Discover how building trustworthiness through systematic evaluation, beyond just "vibe checks," is essential for AI agents to scale and deliver value in high-stakes use cases.

Follow the hosts

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Atin⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Conor⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Vikram⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ ⁠⁠⁠⁠Yash⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow Today's Guest(s)

Connect with Mikiko on LinkedIn

Follow Mikiko on X/Twitter

Explore Mikiko's YouTube channel

Check out Mikiko's ⁠Substack

Connect with MongoDB on LinkedIn

Connect with MongoDB on YouTube

Check out Galileo

⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠Try Galileo⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠Agent Leaderboard

  continue reading

43 epizódok

Artwork
iconMegosztás
 
Manage episode 496059378 series 3617425
A tartalmat a Galileo biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Galileo vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

AI agents offer unprecedented power, but mastering agent reliability is the ultimate challenge for agentic systems to actually work in production.

Mikiko Chandrashekar, Staff Developer Advocate at MongoDB, whose background spans the entire data-to-AI pipeline, unveils MongoDB's vision as the memory store for agents, supporting complex multi-agent systems from data storage and vector search to debugging chat logs. She highlights how MongoDB, reinforced by the acquisition of Voyage, empowers developers to build production-scale agents across various industries, from solo projects to major enterprises. This robust data layer is foundational to ensure agent performance and improve the end user experience.

Mikiko advocates for treating agents as software products, applying rigorous engineering best practices to ensure reliability, even for non-deterministic systems. She details MongoDB's unique position to balance GPU/CPU loads and manage data for performance and observability, including Galileo's integrations.

The conversation emphasizes the profound need to rethink observability, evaluations, and guardrails in the era of agents, showcasing Galileo's family of small language models for real-time guardrailing, Luna-2, and Insights Engine for automated failure analysis. Discover how building trustworthiness through systematic evaluation, beyond just "vibe checks," is essential for AI agents to scale and deliver value in high-stakes use cases.

Follow the hosts

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Atin⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Conor⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ Vikram⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠ ⁠⁠⁠⁠Yash⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

Follow Today's Guest(s)

Connect with Mikiko on LinkedIn

Follow Mikiko on X/Twitter

Explore Mikiko's YouTube channel

Check out Mikiko's ⁠Substack

Connect with MongoDB on LinkedIn

Connect with MongoDB on YouTube

Check out Galileo

⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠Try Galileo⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠

⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠⁠Agent Leaderboard

  continue reading

43 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás