Artwork

A tartalmat a Alex Molak biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alex Molak vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

Why Hinton Was Wrong, Causal AI & Science | Thanos Vlontzos Ep 15 | CausalBanditsPodcast.com

1:06:16
 
Megosztás
 

Manage episode 416911910 series 3526805
A tartalmat a Alex Molak biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alex Molak vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Send us a text

Recorded on Jan 17, 2024 in London, UK.
Video version available here
What makes so many predictions about the future of AI wrong?
And what's possible with the current paradigm?
From medical imaging to song recommendations, the association-based paradigm of learning can be helpful, but is not sufficient to answer our most interesting questions.
Meet Athanasios (Thanos) Vlontzos who looks for inspirations everywhere around him to build causal machine learning and causal inference systems at Spotify's Advanced Causal Inference Lab.
In the episode we discuss:
- Why is causal discovery a better riddle than causal inference?
- Will radiologists be replaced by AI in 2024 or 2025?
- What are causal AI skeptics missing?
- Can causality emerge in Euclidean latent space?
Ready to dive in?
About The Guest
Athanasios (Thanos) Vlontzos, PhD is a Research Scientist at Advanced Causal Inference Lab at Spotify. Previousl;y, he worked at Apple, at SETI Institute with NASA stakeholders and published in some of the best scientific journals, including Nature Machine Learning. He's specialized in causal modeling, causal inferernce, causal discovery and medical imaging.
Connect with Athanasios:
- Athanasios on Twitter/X
- Athanasios on LinkedIn
- Athanasios's web page
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet
Links
The full list of links can be found here.

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

Fejezetek

1. Why Hinton Was Wrong, Causal AI & Science | Thanos Vlontzos Ep 15 | CausalBanditsPodcast.com (00:00:00)

2. [Ad] Rumi.ai (00:27:15)

3. (Cont.) Why Hinton Was Wrong, Causal AI & Science | Thanos Vlontzos Ep 15 | CausalBanditsPodcast.com (00:28:04)

27 epizódok

Artwork
iconMegosztás
 
Manage episode 416911910 series 3526805
A tartalmat a Alex Molak biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Alex Molak vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Send us a text

Recorded on Jan 17, 2024 in London, UK.
Video version available here
What makes so many predictions about the future of AI wrong?
And what's possible with the current paradigm?
From medical imaging to song recommendations, the association-based paradigm of learning can be helpful, but is not sufficient to answer our most interesting questions.
Meet Athanasios (Thanos) Vlontzos who looks for inspirations everywhere around him to build causal machine learning and causal inference systems at Spotify's Advanced Causal Inference Lab.
In the episode we discuss:
- Why is causal discovery a better riddle than causal inference?
- Will radiologists be replaced by AI in 2024 or 2025?
- What are causal AI skeptics missing?
- Can causality emerge in Euclidean latent space?
Ready to dive in?
About The Guest
Athanasios (Thanos) Vlontzos, PhD is a Research Scientist at Advanced Causal Inference Lab at Spotify. Previousl;y, he worked at Apple, at SETI Institute with NASA stakeholders and published in some of the best scientific journals, including Nature Machine Learning. He's specialized in causal modeling, causal inferernce, causal discovery and medical imaging.
Connect with Athanasios:
- Athanasios on Twitter/X
- Athanasios on LinkedIn
- Athanasios's web page
About The Host
Aleksander (Alex) Molak is an independent machine learning researcher, educator, entrepreneur and a best-selling author in the area of causality.
Connect with Alex:
- Alex on the Internet
Links
The full list of links can be found here.

Rumi.ai
All-in-one meeting tool with real-time transcription & searchable Meeting Memory™
Support the show

Causal Bandits Podcast
Causal AI || Causal Machine Learning || Causal Inference & Discovery
Web: https://causalbanditspodcast.com
Connect on LinkedIn: https://www.linkedin.com/in/aleksandermolak/
Join Causal Python Weekly: https://causalpython.io
The Causal Book: https://amzn.to/3QhsRz4

  continue reading

Fejezetek

1. Why Hinton Was Wrong, Causal AI & Science | Thanos Vlontzos Ep 15 | CausalBanditsPodcast.com (00:00:00)

2. [Ad] Rumi.ai (00:27:15)

3. (Cont.) Why Hinton Was Wrong, Causal AI & Science | Thanos Vlontzos Ep 15 | CausalBanditsPodcast.com (00:28:04)

27 epizódok

Minden epizód

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv