Artwork

A tartalmat a Peter Abilla biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Peter Abilla vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

[PODCAST] Michael Sena: How Recall Network Is Creating a Reputation System for AI Agents

1:00:52
 
Megosztás
 

Manage episode 496062360 series 3634813
A tartalmat a Peter Abilla biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Peter Abilla vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Summary

Michael Cena, co-founder of Recall Network, outlines a vision for building the discovery and trust layer for the internet of AI agents. He introduces AgentRank, a reputation system modeled after PageRank, to evaluate and surface trustworthy agents in a future where agents interact, contract, and collaborate with one another. Cena emphasizes the importance of agent memory, human-in-the-loop curation, and economic incentives to ensure quality rankings. The conversation explores Recall’s current progress, including its testnet and agent competitions, while also touching on broader implications for marketing, creativity, and decentralized identity.
Takeaways

– Recall Network is building a discovery layer for the internet of agents
– AgentRank offers a reputation protocol akin to Google’s PageRank
– The AI agent ecosystem is rapidly expanding and interconnected
– Agents can delegate work to other agents, forming complex task webs
– Persistent memory is essential for agent personalization and trust
– Competitions assess agent performance and build credibility
– Community curators play a central role in surfacing valuable agents
– The protocol incentivizes accurate evaluations and reputational staking
– Subjective agent skills, like creativity, require human feedback
– AI agents are extending into many domains, not just finance
Timeline

(00:00) Introduction to Recall Network
(00:44) The Concept of AgentRank
(03:59) The Growth of AI Agents
(07:08) Understanding AI Agents vs. Automation Tools
(09:51) The Learning and Memory of Agents
(13:22) How Recall Solves Reputation Issues
(18:22) The Role of Community in Agent Evaluation
(23:23) Activating Curators and Community Engagement
(27:06) Michael Cena’s Background and Vision
(28:13) The Birth of YouPort and Self-Sovereign Identity
(30:23) The Evolution of Recall and Its Mission
(33:28) Current Stage of Recall: Testnet and Competitions
(36:31) The Role of AI Agents in Marketing and Development
(42:14) Challenges in Evaluating Agents and Trust
(49:35) Rapid Fire Insights on Crypto Trends

--------

Episode is brought to you by Infinex. Experience crypto designed for humans:
https://app.infinex.xyz/?r=B2KSQJ77

Follow me @shmula on X for upcoming episodes and to get in touch with me.
See other Episodes Here. And thank you to all our crypto and blockchain guests.

  continue reading

Fejezetek

1. Introduction to Recall Network (00:00:00)

2. The Concept of AgentRank and Comparison to PageRank (00:00:44)

3. The Growth of AI Agents (00:03:59)

4. Understanding AI Agents vs. Automation Tools (00:07:08)

5. The Learning and Memory of Agents (00:09:51)

6. How Recall Solves Reputation Issues (00:13:22)

7. The Role of Community in Agent Evaluation (00:18:22)

8. Activating Curators and Community Engagement (00:23:23)

9. Michael Sena’s Background and Vision (00:27:06)

10. The Birth of YouPort and Self-Sovereign Identity (00:28:13)

11. The Evolution of Recall and Its Mission (00:30:23)

12. Current Stage of Recall: Testnet and Competitions (00:33:28)

13. The Role of AI Agents in Marketing and Development (00:36:31)

14. Challenges in Evaluating Agents and Trust (00:42:14)

15. Rapid Fire Insights on Crypto Trends (00:49:35)

75 epizódok

Artwork
iconMegosztás
 
Manage episode 496062360 series 3634813
A tartalmat a Peter Abilla biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Peter Abilla vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

Summary

Michael Cena, co-founder of Recall Network, outlines a vision for building the discovery and trust layer for the internet of AI agents. He introduces AgentRank, a reputation system modeled after PageRank, to evaluate and surface trustworthy agents in a future where agents interact, contract, and collaborate with one another. Cena emphasizes the importance of agent memory, human-in-the-loop curation, and economic incentives to ensure quality rankings. The conversation explores Recall’s current progress, including its testnet and agent competitions, while also touching on broader implications for marketing, creativity, and decentralized identity.
Takeaways

– Recall Network is building a discovery layer for the internet of agents
– AgentRank offers a reputation protocol akin to Google’s PageRank
– The AI agent ecosystem is rapidly expanding and interconnected
– Agents can delegate work to other agents, forming complex task webs
– Persistent memory is essential for agent personalization and trust
– Competitions assess agent performance and build credibility
– Community curators play a central role in surfacing valuable agents
– The protocol incentivizes accurate evaluations and reputational staking
– Subjective agent skills, like creativity, require human feedback
– AI agents are extending into many domains, not just finance
Timeline

(00:00) Introduction to Recall Network
(00:44) The Concept of AgentRank
(03:59) The Growth of AI Agents
(07:08) Understanding AI Agents vs. Automation Tools
(09:51) The Learning and Memory of Agents
(13:22) How Recall Solves Reputation Issues
(18:22) The Role of Community in Agent Evaluation
(23:23) Activating Curators and Community Engagement
(27:06) Michael Cena’s Background and Vision
(28:13) The Birth of YouPort and Self-Sovereign Identity
(30:23) The Evolution of Recall and Its Mission
(33:28) Current Stage of Recall: Testnet and Competitions
(36:31) The Role of AI Agents in Marketing and Development
(42:14) Challenges in Evaluating Agents and Trust
(49:35) Rapid Fire Insights on Crypto Trends

--------

Episode is brought to you by Infinex. Experience crypto designed for humans:
https://app.infinex.xyz/?r=B2KSQJ77

Follow me @shmula on X for upcoming episodes and to get in touch with me.
See other Episodes Here. And thank you to all our crypto and blockchain guests.

  continue reading

Fejezetek

1. Introduction to Recall Network (00:00:00)

2. The Concept of AgentRank and Comparison to PageRank (00:00:44)

3. The Growth of AI Agents (00:03:59)

4. Understanding AI Agents vs. Automation Tools (00:07:08)

5. The Learning and Memory of Agents (00:09:51)

6. How Recall Solves Reputation Issues (00:13:22)

7. The Role of Community in Agent Evaluation (00:18:22)

8. Activating Curators and Community Engagement (00:23:23)

9. Michael Sena’s Background and Vision (00:27:06)

10. The Birth of YouPort and Self-Sovereign Identity (00:28:13)

11. The Evolution of Recall and Its Mission (00:30:23)

12. Current Stage of Recall: Testnet and Competitions (00:33:28)

13. The Role of AI Agents in Marketing and Development (00:36:31)

14. Challenges in Evaluating Agents and Trust (00:42:14)

15. Rapid Fire Insights on Crypto Trends (00:49:35)

75 epizódok

Alle episoder

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv

Hallgassa ezt a műsort, miközben felfedezi
Lejátszás