Python Bytes is a weekly podcast hosted by Michael Kennedy and Brian Okken. The show is a short discussion on the headlines and noteworthy news in the Python, developer, and data science space.
…
continue reading
A tartalmat a Michael Kennedy biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Michael Kennedy vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!
Lépjen offline állapotba az Player FM alkalmazással!
#510: 10 Polars Tools and Techniques To Level Up Your Data Science
MP3•Epizód kép
Manage episode 489565396 series 1422209
A tartalmat a Michael Kennedy biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Michael Kennedy vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Are you using Polars for your data science work? Maybe you've been sticking with the tried-and-true Pandas? There are many benefits to Polars directly of course. But you might not be aware of all the excellent tools and libraries that make Polars even better. Examples include Patito which combines Pydantic and Polars for data validation and polars_encryption which adds AES encryption to selected columns. We have Christopher Trudeau back on Talk Python To Me to tell us about his list of excellent libraries to power up your Polars game and we also talk a bit about his new Polars course.
Episode sponsors
Agntcy
Sentry Error Monitoring, Code TALKPYTHON
Talk Python Courses
…
continue reading
Episode sponsors
Agntcy
Sentry Error Monitoring, Code TALKPYTHON
Talk Python Courses
Links from the show
New Theme Song (Full-Length Download and backstory): talkpython.fm/blog
Polars for Power Users Course: training.talkpython.fm
Awesome Polars: github.com
Polars Visualization with Plotly: docs.pola.rs
Dataframely: github.com
Patito: github.com
polars_iptools: github.com
polars-fuzzy-match: github.com
Nucleo Fuzzy Matcher: github.com
polars-strsim: github.com
polars_encryption: github.com
polars-xdt: github.com
polars_ols: github.com
Least Mean Squares Filter in Signal Processing: www.geeksforgeeks.org
polars-pairing: github.com
Pairing Function: en.wikipedia.org
polars_list_utils: github.com
Harley Schema Helpers: tomburdge.github.io
Marimo Reactive Notebooks Episode: talkpython.fm
Marimo: marimo.io
Ahoy Narwhals Podcast Episode Links: talkpython.fm
Watch this episode on YouTube: youtube.com
Episode #510 deep-dive: talkpython.fm/510
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
Polars for Power Users Course: training.talkpython.fm
Awesome Polars: github.com
Polars Visualization with Plotly: docs.pola.rs
Dataframely: github.com
Patito: github.com
polars_iptools: github.com
polars-fuzzy-match: github.com
Nucleo Fuzzy Matcher: github.com
polars-strsim: github.com
polars_encryption: github.com
polars-xdt: github.com
polars_ols: github.com
Least Mean Squares Filter in Signal Processing: www.geeksforgeeks.org
polars-pairing: github.com
Pairing Function: en.wikipedia.org
polars_list_utils: github.com
Harley Schema Helpers: tomburdge.github.io
Marimo Reactive Notebooks Episode: talkpython.fm
Marimo: marimo.io
Ahoy Narwhals Podcast Episode Links: talkpython.fm
Watch this episode on YouTube: youtube.com
Episode #510 deep-dive: talkpython.fm/510
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
717 epizódok
MP3•Epizód kép
Manage episode 489565396 series 1422209
A tartalmat a Michael Kennedy biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Michael Kennedy vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Are you using Polars for your data science work? Maybe you've been sticking with the tried-and-true Pandas? There are many benefits to Polars directly of course. But you might not be aware of all the excellent tools and libraries that make Polars even better. Examples include Patito which combines Pydantic and Polars for data validation and polars_encryption which adds AES encryption to selected columns. We have Christopher Trudeau back on Talk Python To Me to tell us about his list of excellent libraries to power up your Polars game and we also talk a bit about his new Polars course.
Episode sponsors
Agntcy
Sentry Error Monitoring, Code TALKPYTHON
Talk Python Courses
…
continue reading
Episode sponsors
Agntcy
Sentry Error Monitoring, Code TALKPYTHON
Talk Python Courses
Links from the show
New Theme Song (Full-Length Download and backstory): talkpython.fm/blog
Polars for Power Users Course: training.talkpython.fm
Awesome Polars: github.com
Polars Visualization with Plotly: docs.pola.rs
Dataframely: github.com
Patito: github.com
polars_iptools: github.com
polars-fuzzy-match: github.com
Nucleo Fuzzy Matcher: github.com
polars-strsim: github.com
polars_encryption: github.com
polars-xdt: github.com
polars_ols: github.com
Least Mean Squares Filter in Signal Processing: www.geeksforgeeks.org
polars-pairing: github.com
Pairing Function: en.wikipedia.org
polars_list_utils: github.com
Harley Schema Helpers: tomburdge.github.io
Marimo Reactive Notebooks Episode: talkpython.fm
Marimo: marimo.io
Ahoy Narwhals Podcast Episode Links: talkpython.fm
Watch this episode on YouTube: youtube.com
Episode #510 deep-dive: talkpython.fm/510
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
Polars for Power Users Course: training.talkpython.fm
Awesome Polars: github.com
Polars Visualization with Plotly: docs.pola.rs
Dataframely: github.com
Patito: github.com
polars_iptools: github.com
polars-fuzzy-match: github.com
Nucleo Fuzzy Matcher: github.com
polars-strsim: github.com
polars_encryption: github.com
polars-xdt: github.com
polars_ols: github.com
Least Mean Squares Filter in Signal Processing: www.geeksforgeeks.org
polars-pairing: github.com
Pairing Function: en.wikipedia.org
polars_list_utils: github.com
Harley Schema Helpers: tomburdge.github.io
Marimo Reactive Notebooks Episode: talkpython.fm
Marimo: marimo.io
Ahoy Narwhals Podcast Episode Links: talkpython.fm
Watch this episode on YouTube: youtube.com
Episode #510 deep-dive: talkpython.fm/510
Episode transcripts: talkpython.fm
Theme Song: Developer Rap
🥁 Served in a Flask 🎸: talkpython.fm/flasksong
---== Don't be a stranger ==---
YouTube: youtube.com/@talkpython
Bluesky: @talkpython.fm
Mastodon: @[email protected]
X.com: @talkpython
Michael on Bluesky: @mkennedy.codes
Michael on Mastodon: @[email protected]
Michael on X.com: @mkennedy
717 epizódok
Όλα τα επεισόδια
×Üdvözlünk a Player FM-nél!
A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.