Artwork

A tartalmat a Louis-François Bouchard biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Louis-François Bouchard vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.
Player FM - Podcast alkalmazás
Lépjen offline állapotba az Player FM alkalmazással!

What is Data Science like at NVIDIA? With Meriem Bendris - What's AI Podcast Episode 1

50:52
 
Megosztás
 

Manage episode 372142558 series 3496315
A tartalmat a Louis-François Bouchard biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Louis-François Bouchard vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

What is Data Science like at NVIDIA? An interview with Meriem Bendris, Senior Solution Architect at NVIDIA.

Sign up to Meriem's free session: https://www.nvidia.com/gtc/session-catalog/?ncid=ref-inpa-477072&tab.catalogallsessionstab=16566177511100015Kus&search=meriem#/session/1670255843552001iaMr

The interview answers the questions...

00:00 Hey! Give a Thumbs up to the video If you enjoy it and let me know who or which role you’d like me to interview next!

00:50 How did you get into NVIDIA? What’s your academic background?

04:12 How were the NVIDIA interviews?

05:54 How did you prepare for the interviews?

09:13 What is a solution architect at Nvidia?

13:47 How are the rôles responsibilities at NVIDIA?

17:15 Do you see any resemblance between your work at NVIDIA and when you were doing your PhD or postgraduate degree?

23:10 When making models more efficients (quantizing), do you reduce performance significantly or do you manage to make them more efficient without sacrificing performance?

25:10 What do you mean by distributing a model and why would you do that?

29:43 Would you say that your PHD was worthwhile?

33:25 How can someone coming from a completely different field make the transition into data science?

40:00 Would you recommend diving into resource usage/management when learning AI?

43:00 What material/hardware do you need when wanting to learn AI?

  continue reading

33 epizódok

Artwork
iconMegosztás
 
Manage episode 372142558 series 3496315
A tartalmat a Louis-François Bouchard biztosítja. Az összes podcast-tartalmat, beleértve az epizódokat, grafikákat és podcast-leírásokat, közvetlenül a Louis-François Bouchard vagy a podcast platform partnere tölti fel és biztosítja. Ha úgy gondolja, hogy valaki az Ön engedélye nélkül használja fel a szerzői joggal védett művét, kövesse az itt leírt folyamatot https://hu.player.fm/legal.

What is Data Science like at NVIDIA? An interview with Meriem Bendris, Senior Solution Architect at NVIDIA.

Sign up to Meriem's free session: https://www.nvidia.com/gtc/session-catalog/?ncid=ref-inpa-477072&tab.catalogallsessionstab=16566177511100015Kus&search=meriem#/session/1670255843552001iaMr

The interview answers the questions...

00:00 Hey! Give a Thumbs up to the video If you enjoy it and let me know who or which role you’d like me to interview next!

00:50 How did you get into NVIDIA? What’s your academic background?

04:12 How were the NVIDIA interviews?

05:54 How did you prepare for the interviews?

09:13 What is a solution architect at Nvidia?

13:47 How are the rôles responsibilities at NVIDIA?

17:15 Do you see any resemblance between your work at NVIDIA and when you were doing your PhD or postgraduate degree?

23:10 When making models more efficients (quantizing), do you reduce performance significantly or do you manage to make them more efficient without sacrificing performance?

25:10 What do you mean by distributing a model and why would you do that?

29:43 Would you say that your PHD was worthwhile?

33:25 How can someone coming from a completely different field make the transition into data science?

40:00 Would you recommend diving into resource usage/management when learning AI?

43:00 What material/hardware do you need when wanting to learn AI?

  continue reading

33 epizódok

모든 에피소드

×
 
Loading …

Üdvözlünk a Player FM-nél!

A Player FM lejátszó az internetet böngészi a kiváló minőségű podcastok után, hogy ön élvezhesse azokat. Ez a legjobb podcast-alkalmazás, Androidon, iPhone-on és a weben is működik. Jelentkezzen be az feliratkozások szinkronizálásához az eszközök között.

 

Gyors referencia kézikönyv